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Abstract. We examine the effect of ignition site topology on the rate of reaction of a 
detonating material. The hot plane, hot line, and hot finite patch topologies are added to 
previous work on hot spot ignition. The hot plane and hot patch ignition forms would 
arise from ignition due to shear banding, and the hot line ignition form is shown to 
complete the topological set. The limiting behavior of instantaneous ignition is considered 
and used to construct simple reaction rate vs. extent of reaction forms. We fit simple form 
factor reaction rates, as might be available in most hydro codes with reactive flow modes, 
to the simple topologies. The difference between the rate vs. extent forms are examined 
with the objective that one should be able to use this information to distinguish between 
the different topological ignition forms.

Introduction

For secondary explosives, it has long been 
understood that some form of energy localization 
is required to get some fraction of the explosive 
hot enough to start a self propagating burn. This 
burn then progresses through the explosive, 
consuming that portion of the explosive that did 
not get heated hot enough from homogeneous 
shock to undergo rapid decomposition. The 
process of igniting the explosive is often known as 
t h e  i g n i t i o n  p h a s e ,  a n d  t h e  s u b s e q u e n t  
consumption phase is known as the growth and 
completion phase. One of the current controversies 
in detonation science is the nature of the ignition 
model. One hypothesis presumes that the ignition 
is driven by collapse of pores, where the explosive 
either forms a jet across the pore that effectively 
doubles the shock pressure on the far side of the 
pore, or collapses relatively uniformly with a high 
degree of viscous heating. Either form also heats 

any enclosed pore gases which heat up and could 
then lead to ignition by heating the surrounding 
explosive. The other hypothesis presumes that the 
ignition is driven by a shear banding processes that 
localizes the heat in a slip plane of the explosive
crystal1. The energy is localized in a thin layer of 
explosive, creating an ignition sheet that then leads 
to  s imple  l aminar  burn .  S ince  these  two  
mechanisms have significantly different 
geometrical signatures, there is a reasonable 
chance that one could distinguish between the two 
of them by the use of gauge records in a shock to 
detonation experiment.

In previous work we derived a statistical hot 
spot (SHS) model2,3 for hot spot ignition and 
growth. The initial SHS model was based on the 
assumption that the ignition locations are hot spots
that begin as a point or small sphere in space and 
then grow out. Initiation from a point is what is 
expected if the mechanism for initiation is driven 
by pore collapse, where the initial size of the hot 
spot is proportional the size of the initial pore. We 



also assumed that the location of these hot spots is 
randomly distributed throughout the system. From 
these simple assumptions and a laminar burn rate, 
one is able to develop a complete burn history 
without any further adjustable parameters. This 
has been verified in a recent paper by Hill et.al.4

In this paper,  we extend that  model to 
examine planar or sheet initiation, as one might 
expect from shear band ignition. We also include, 
for completeness, the possibility of ignition due to 
hot line, as one might expect about a line defect.

By integrating these two set of equations, it is 
possible to develop a �̇ vs. x curve5, where x is the 
extent of reaction, that can be compared to that of 
the hot spot mechanism. The differences between 
the hot spot and hot plane mechanisms can then be 
used to differentiate the growth and completion 
characteristics of shear band ignition from hot spot
ignition. 

Considerations of Basic Topology

There are a couple of cases to consider. The 
first, and simplest, is to assume that the shear band 
forms a sheet that is large enough to ignore edge 
effects. In this case, as we did before with the 
point ignition source, we develop a probability 
distribution for the amount of explosive that has 
not yet burned, based on the simple planar 
geometry. By use of a time differentiation, we 
construct a manifold of moment differential 
equations. Whereas the hot spot system consists of 
5 equations, the hot plane system consists of only 
3. The second case to consider is where the size of 
the shear band is not large enough to ignore the 
edge effects. In that case, we need to define an 
average patch size and initial perimeter length. The 
space that the expanding shear band occupies can 
then be decomposed into three different 
components – a plane of the initial area, a line of 
half the perimeter, and a single ignition point. 
Following the same derivation as used with the hot 
spot model, these terms separate, leading to 
probability of the explosive not being reacted that 
is a product of the planar, linear, and point ignition 
terms. As before, each of these geometries can be 
transformed into a differential manifold by 
differentiating  them in  t ime.  Thus  the  f ina l  

probability is developed from the product of three 
probabilities derived from these manifolds of 3, 4 
and 5 linear differential equations, respectively.

Hot Planes

The hot plane analogy to the hot spot is as 
follows: Assume the existence of a single plane of 
combusted material in a volume � with an area �
and that it has expanded R in both directions. The 
fraction of the total volume that this object 
occupies is just its volume divided by the total 
volume:

���
� (1)

The probability that a point in space is not 
covered by the object, �� is 

�� = 1 − ���
� ≅ exp �− ���

� �, (2)

where the second equality is the limit as the 
volume of the object is small compared to the total 
volume. In a real system, there will be several of 
these objects in any given volume. Assuming that 
the placement of these planes is uncorrelated, the 
probability of not being covered by any of them is 
then just the product of all of the individual Q 
probabilities. If we define ��(�, �) as the number 
density of planes with a given amount of 
expansion R, e. g. �(�)�

� , where �(�) is the number 
in the volume, then we have the overall probability 
of not being covered as:

Q�(t) =  exp�− ∫ �� 2���(�, �)�
� � (3)

When we are considering hot spots, we 
particularly want to understand how they grow, so, 
as before, we will define the number density 
��(�, �) which is the number density of hot planes 
that are formed at time � and die at time �. It is 
useful to note that ��(�, �) = 0 for � > � If we 
assume that the laminar burn rate of the hot plane 
� is simply dependent on the current time, then
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(4)

where � is the initial half thickness of the ignited 
plane. This integral states that the number density 
of planes is the sum of all planes that have been 
ignited and are still active, and those that have 
ignited and stopped reacting. 

Let us make some definitions to simplify what 
follows:

��(�) ≡ 2 ∫ �� ���(�, �)�
� (5)

The number of hot planes that have become 
active but could have died is

��(�) ≡ ∫ �∫ �̅�(�, �)���
� ����

�� . (6)

The number of active planes is

��
�(�) ≡ ∫ �� ∫ �� �̅�(�, �)�

�
�

�� . (7)

The rate of the number density of planes that 
became active at time t is:

��
�(�) =  ∫ �� �̅�(�, �)�

� . (8)

If we take the time derivative of �� we get

���(�)
�� = 2���

�(�) + 2�(�)��
�(�) (9)

����(�)
�� = ��

�(�) − ∫ �� �̅�(�, �)�
�� (10)

The second term in this last equation is the 
rate at which active hot sheets become inactive, or 
die. We call this the death rate. If the death rate is 
a fixed fraction �� of the currently active hot 
sheets, then this last expression becomes

����(�)
�� = ��

�(�) − ����
�(�) (11)

Hot lines

The hot line analogy to the hot spot is as 
follows: Assume the existence of a single line of 
combusted material in a volume � with a length �
and that it has expanded � in both directions. The 
fraction of the total volume that this object 
occupies is just its volume divided by the total 
volume:

����
� (12)

The probability that a point in space is not 
covered by the object, Q, is 

�� = 1 − ����
� ≅ exp �− ����

� � (13)

where the second equality is the limit as the 
volume of the object goes to zero. In a real system, 
there will be several of these objects in any given 
volume. Assuming that the placement of these 
lines is uncorrelated, the probability of not being 
covered by any of them is then just the product of 
all of the individual probabilities. If we define 
��(�, �) as the number density of lines with a 
given radius R, e. g. �(�)�

� , where �(�) is the 
number in the volume, then we have the overall 
probability of not being covered as:

Q�(t) =  exp�− ∫ �� �����(�, �)�
� � (14)

As before, when we want to understand how 
they grow, so we will define the number density 
��(�, �) which is the number density of hot lines 
that are formed at time � and die at time �. If we 
assume that the growth rate � of each hot line is 
simply dependent on the current time, then
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Where � is the initial half radius of the ignited 
line. This integral states that the number density of 
lines is the sum of all lines that have been ignited 
and are still active, and those that have ignited and 
stopped reacting. 

Let us make some definitions to simplify what 
follows:

��(�) ≡ � ∫ �� ����(�, �)�
� (16)

The number of hot lines that have become 
active but could have died is

��(�) ≡ ∫ �∫ �̅�(�, �)���
� ����

�� (17)

The number of active planes is

��
�(�) ≡ ∫ �� ∫ �� �̅�(�, �)�

�
�

�� (18)

The number density of planes that became 
active at time t is:

��
�(�) =  ∫ �� �̅�(�, �)�

� (19)

If we define

��
�(�) ≡ ∫ �� 2� ∫ �∫ �̅�(�, �)� �� − � − ∫ �� �(�)�

� � ���
� � ���
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�

� (20)

If the death rate is a fixed fraction � of the 
currently active hot lines, then we have

�̅�(�, �) = � ∫ �̅�(�, �)���
�  (21)

If we take the time derivative of ��, ��
�, ��

�

we have the following pde hierarchy:

���(�)
�� = �����

�(�) + ��(�)��
�(�) (22)

����(�)
�� = 2���

�(�) − ���
�(�) + 2�(�)��

�(�)
(23)

����(�)
�� = ��

�(�) − ���
�(�) (24)

Finite Size Hot Planes

In a real system, it is unreasonable to assume 
that a planar ignition site will have infinite extent. 
For example, one does not field explosives that are 
made up of one single crystal. Thus, the size of the 
crystals in the explosive ensemble defines a 
maximum extent of hot plane. The ignition site of 
a hot plane can be defined by an average area 
� and perimeter length �. Using the concepts 
expressed in the previous sections, the fraction of 
the total volume subscribed by the hot patch is:

�����
�������

� ��

� (25)

Thus, if the number density of patches with 
initial patch area �, initial perimeter �, and burned 
radius � is ��(�, �, �), then the probability of not 
being covered by one of these patches is just the 
product of the individual probabilities which 
equates integral over all of the patches:

��(t) = exp �− ∫ dA ∫ dP ∫ dR ρ�(A, P, R, t) �2RA + �
� R�P + ��

� R���
�

�
�

�
� � (26)



Note, by making the assumption that the 
volume of any given hot spot is small compared to 
the total volume, we can neglect the fact that it is 
impossible for the perimeter of the hot patch to 
burn any other part of the same patch, as this 
overlap would be vanishingly small. Thus, �� can 

be broken into the planar, line, and point 
components that we have already described, either 
in this paper or previous ones. One can now 
integrate each component over A and P, and then
write the equation in terms of the average area �̅
and average perimeter length  ��.

��(t) = exp �− ∫ dR ρ�(R, t) �2R�̅  + �
� R�P� + ��

� R���
� � (27)

Let us define the following relations to reduce 

the complexity of these equations: �̅ = � ���
��

�
. If 

the patch is a circle, � = 4/�  , and if it is a square 

it is 1. Similarly, let us define � = ����
�� �� , and 

�(�, �)�� = ���
��

�
��(�, �)��. With these 

definitions, the probability of not having burned is 
just

(1 − x(t)) = exp �−2 ∫ ���(�, �) ��� + πr� + ��
� r���

� � (28)

It is interesting to note that even with the 
complexity of a finite sized patch, we are still left 
with only two parameters – the patch geometry 
and the overall density of patches. As before, the 
density of hot patches will be defined as an 
integral over the ignition and death time of the 
individual hot patches, replacing �� with �.

Limits of Instantaneous Ignition and Uniform 
Burn Rate

Let us examine the behavior if ��(�, �) =
���(� − �) and �(�) = �. This implies the � = 0
and ��

�(�) =  ��(� − �). So the probability of not 
being reacted is then just

��(�) = (1 − ��) = ������(��(���)�)� � > �
1 � ≤ � �

(29)

Let us now compute �̇�(��):

�� = 1 − �����(��(���)�)� (30)

�̇� = 2(���)
�
��(1 − ��)(− ln(1 − ��))

�
�
(31)

The same reasoning can be applied to each of 
the simple 1, 2, and 3 dimensional ignition forms.

If we define a normalized burn velocity ��  for 
each dimension, we find we can write the �̇�(��)
function as

�̇� = ���(1 − ��)[− ln(1 − ��)]
���

� (32)

In principle, this expression could be used to 
determine the effective dimensionality of the 
ignition surface. We list the value of �� in table 1

It is typical for codes that implement reactive 
flow models to have a growth/completion model 
based on what is known as a form factor reaction: 
�̇ = ���(1 − �)� . To aid rapid implementation of 
these models, we provide fits to that form in Table 
1. In table 1 we show both the unconstrained fits 
(the first line of the table for a particular geometry) 
and the fit that is constrained to exactly match the 
early time behavior.

Now let us consider this limit for the finite 
sized patch. The derivative of mass fraction is just

�̇ = ��̇(1 − �)[2� + 4�� + 4���] (33)

Here, � is short hand for 4(� + (� − �)�)/��. 
In order to get this in the form of �̇(�), we need to 
solve the following cubic equation for r as a 
function of x. 

0 = ��
� ��� + 2���� + 2��� + ln(1 − �)

(34)



The solution of the cubic equation is 
straight forward.

Results

We compare the rate expressions for the three 
different basic configurations in figure 1. Clearly, 
as the dimensionality of the ignition size increases 
(from a plane to a point), the maximum rate moves 
to points with higher extent of reaction.

Fig 1: Decomposition rate as a function of 
composition for the three basic ignition forms.

Let us now consider the finite sized patch 
system. In figure 2 we show the rate expressions, 
normalized to the maximum value over the range 
of x, for the finite size patch with � = 4/�, and 
varying � from 0.01 to 100. The chosen value of �
corresponds to igniting a round patch of explosive. 
Large values of � indicate that a large amount of 

material is being ignited for each ignition site, 
while small values of � indicate that the area of the 
hot patch is isolated or sparse. Figure 2 shows that 
for round hot patches, the normalized rate for 
small values of � acts like a hot spot, while large 
values act like a hot plane. In essence, large values 
of � indicate that the explosive material will be 
consumed before the edge effects have a chance to 
modify the reaction behavior.

Fig 2. Normalized decomposition rate as a 
function of composition for the finite round 
(� = 4/�) ignition patch � varying from 0.01 to 
100.

I n  F igure 3 we consider the case with 
� = 1/3 as a function of �. Again, we are holding 
the topology of the patch fixed as we change the 
density of these hot patches. This value of �
roughly corresponds to a rectangular patch with 
width approximately 10% of the length. As before, 

Table 1: Effective form factor parameters and normalized burn velocity of the three basic hot spot 
geometries. Where two lines are present for a given geometry, the second parameterization enforces 
that the early time behavior is exact.
Ignition 
Source

� � � RMS Error ��

Hot plane �� 0 1 0 2���
Hot line 2.08067 �� 0.515439 0.807104 0.003139 �(���)

�
� 

2.0 �� 0.5 0.777561 0.007147
Hot spot 3.203796 �� 0.695014 0.751105 0.006139

� �4���
3 �

�
�

3.0 �� 0.66667 0.706635 0.015391



as � gets smaller, the hot patch becomes more hot 
spot like. This corresponds to the fact that the hot 
patch does not encompass a large volume of space, 
so that over time the mere existence of the finite 
size washes out the initial shape of the patch. As �
gets larger, the shape of the initial hot patch starts 
to dominate the reaction rate.

Fig 3. Normalized decomposition rate as a 
function of composition for the finite ignition 
patch with � = 1/3 and � varying from 0.01 to 
100.

Finally, in Figure 4 we examine the effect of 
� on the shape of the decomposition rate curve. As 
� goes from 4/� to 0, we start with a single round 
hot patch inside an roughly spherical crystal
(� = 4/�), to a square patch in a cubic crystal 
(� = 1), and go to either 8 line segment patches in 
a cubic crystal or 4 line segments through a 
spherical crystal (� = 0). It is interesting to note 
that the peak of the �̇ curve is not monotonically 
increasing with decreasing �. In fact, the largest 
extent of reaction that corresponds to a maximum 
reaction rate is 0.45 which occurs when �~0.4
for � = 1. This is roughly halfway between the 
extent of reaction of the maximum reaction rate for 
the hot point and hot line hot spots. 

Since the location of the maximum reaction 
ra te  i s  a  non-monotonic function, it becomes 
obvious that discriminating between different 
topologies cannot be done by simply noting the 
point of maximum reaction rate. Essentially, we 

find that a peak rate at low extent of reaction can 
be ascribed to either thin line-like ignition zones, 
or relatively small planar patches. The telltale 
difference between these two ignition topologies is 
the initial reaction rate. The initial reaction rate is 
directly related to the extent that the ignition 
mechanism ignites planar sheets. Thus, though 
these different topologies may peak at the same 
point, planar based topologies will have an initially 
faster reaction.

Fig 4. Normalized decomposition rate as a 
function of � for � = 1. Note that the peak 
location is not monotonically varying with �.

Conclusions

In this paper we have examined the effect of 
different ignition topologies on the geometric 
reaction rate of detonating high explosives. By 
making some simplifying assumptions on the 
intrinsic rate expressions, we were able to derive 
the reaction form factors of detonating high 
explosives that one could use in a standard hydro 
code.

The detonation process can be a rather 
complex combination of effects. The reaction 
mechanisms discussed here apply to the initial 
conversion from solid explosive to gas due to a 
heterogeneous reaction mechanism (hot spots or 
shear bands). To the extent that the detonation 
reaction is being driven by either slow reactions, 
as in carbon-cluster formation, or homogeneous 



solid decomposition reactions due to the adiabatic 
heating of the explosive, the behaviors derived 
here will be obscured.

With those caveats in mind, however, one 
should be able to use the reaction rate forms 
derived here to differentiate between explosives 
driven by hot spot ignition/initiation and those 
driven by shear banding. In order to do this, one 
needs the equation of state of the reactant and 
product species, pressure traces from the von 
Neumann spike to the state where the solid is no 
longer burning, which is often the CJ state, and the 
burn rate of the explosive. By calculating the 
equilibrium pressure along the Rayleigh line, one 
can back out the extent of reaction as a function of 
time. One can then construct the rate vs. extent of 
reaction curve that can be compared to these 
reaction forms.
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Discussion

Question, David Dunlap, UNM:

In diffusion-limited capture by randomly placed 
traps people are sometimes interested in the long-
time tails of the survival probability. At early 
t imes there is  an exponential  decay of the 
probability, but at long times what is left to be 
captured "lives on" in relatively trap-free voids 
(like your pores), the size of these sparse regions 
governed by the Poisson distribution function. 
This modifies the long time behavior, such that the 
tail of the survival probability is a slower-than-
exponential decay going as exp(-t^(d/(d+2)) where 
d is the dimensionality. There is a reference, M. D. 
Donsder and SRS Varadhan, Commun. Pure Appl. 
Math 28 (1975) p.525 to which this is attributed.

So when I was listening to your talk, and saw 
you attributing the consumption rate to the 
distribution of pore sizes, I was struck by the 
possible similarity of your analysis and this. I hope 
this is helpful.

Reply by A. Nichols:

It is typical for reactive flow models to construct 
something which has a finite completion time. 
This helps in several issues in a hydro code. The 
po in t  I  am making, and your references 
corroborate, is that the completion rate of the hot 
spots is NOT simple and not over a finite time. 
Thus these simple models have a fundamental flaw 
in their long time behavior that is resolved with the 
statistical hot spot models.


